/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2017 Chukong Technologies Inc. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // #include "2d/ZMLCCParticleSystem.h" #include #include "2d/CCParticleBatchNode.h" #include "renderer/CCTextureAtlas.h" #include "base/base64.h" #include "base/ZipUtils.h" #include "base/CCDirector.h" #include "base/CCProfiling.h" #include "base/ccUTF8.h" #include "renderer/CCTextureCache.h" #include "platform/CCFileUtils.h" #include "common/CocosConfig.h" using namespace std; NS_CC_BEGIN // ideas taken from: // . The ocean spray in your face [Jeff Lander] // http://www.double.co.nz/dust/col0798.pdf // . Building an Advanced Particle System [John van der Burg] // http://www.gamasutra.com/features/20000623/vanderburg_01.htm // . LOVE game engine // http://love2d.org/ // // // Radius mode support, from 71 squared // http://particledesigner.71squared.com/ // // IMPORTANT: Particle Designer is supported by cocos2d, but // 'Radius Mode' in Particle Designer uses a fixed emit rate of 30 hz. Since that can't be guaranteed in cocos2d, // cocos2d uses a another approach, but the results are almost identical. // inline void normalize_point(float x, float y, zml_particle_point* out) { float n = x * x + y * y; // Already normalized. if (n == 1.0f) return; n = sqrt(n); // Too close to zero. if (n < MATH_TOLERANCE) return; n = 1.0f / n; out->x = x * n; out->y = y * n; } /** A more effect random number getter function, get from ejoy2d. */ inline static float RANDOM_M11(unsigned int *seed) { *seed = *seed * 134775813 + 1; union { uint32_t d; float f; } u; u.d = (((uint32_t)(*seed) & 0x7fff) << 8) | 0x40000000; return u.f - 3.0f; } ZMLParticleData::ZMLParticleData() { memset(this, 0, sizeof(ZMLParticleData)); } bool ZMLParticleData::init(int count) { maxCount = count; posx= (float*)malloc(count * sizeof(float)); posy= (float*)malloc(count * sizeof(float)); startPosX= (float*)malloc(count * sizeof(float)); startPosY= (float*)malloc(count * sizeof(float)); colorR= (float*)malloc(count * sizeof(float)); colorG= (float*)malloc(count * sizeof(float)); colorB= (float*)malloc(count * sizeof(float)); colorA= (float*)malloc(count * sizeof(float)); deltaColorR= (float*)malloc(count * sizeof(float)); deltaColorG= (float*)malloc(count * sizeof(float)); deltaColorB= (float*)malloc(count * sizeof(float)); deltaColorA= (float*)malloc(count * sizeof(float)); size= (float*)malloc(count * sizeof(float)); deltaSize= (float*)malloc(count * sizeof(float)); startSize= (float*)malloc(count * sizeof(float)); deltaSizeAllLife= (float*)malloc(count * sizeof(float)); rotation= (float*)malloc(count * sizeof(float)); deltaRotation= (float*)malloc(count * sizeof(float)); timeToLive= (float*)malloc(count * sizeof(float)); life= (float*)malloc(count * sizeof(float)); atlasIndex= (unsigned int*)malloc(count * sizeof(unsigned int)); modeA.dirX= (float*)malloc(count * sizeof(float)); modeA.dirY= (float*)malloc(count * sizeof(float)); modeA.radialAccel= (float*)malloc(count * sizeof(float)); modeA.tangentialAccel= (float*)malloc(count * sizeof(float)); modeB.angle= (float*)malloc(count * sizeof(float)); modeB.degreesPerSecond= (float*)malloc(count * sizeof(float)); modeB.deltaRadius= (float*)malloc(count * sizeof(float)); modeB.radius= (float*)malloc(count * sizeof(float)); return posx && posy && startPosY && startPosX && colorR && colorG && colorB && colorA && deltaColorR && deltaColorG && deltaColorB && deltaColorA && size && startSize && deltaSizeAllLife && deltaSize && rotation && deltaRotation && timeToLive &&life && atlasIndex && modeA.dirX && modeA.dirY && modeA.radialAccel && modeA.tangentialAccel && modeB.angle && modeB.degreesPerSecond && modeB.deltaRadius && modeB.radius; } void ZMLParticleData::release() { CC_SAFE_FREE(posx); CC_SAFE_FREE(posy); CC_SAFE_FREE(startPosX); CC_SAFE_FREE(startPosY); CC_SAFE_FREE(colorR); CC_SAFE_FREE(colorG); CC_SAFE_FREE(colorB); CC_SAFE_FREE(colorA); CC_SAFE_FREE(deltaColorR); CC_SAFE_FREE(deltaColorG); CC_SAFE_FREE(deltaColorB); CC_SAFE_FREE(deltaColorA); CC_SAFE_FREE(size); CC_SAFE_FREE(deltaSize); CC_SAFE_FREE(startSize); CC_SAFE_FREE(deltaSizeAllLife); CC_SAFE_FREE(rotation); CC_SAFE_FREE(deltaRotation); CC_SAFE_FREE(timeToLive); CC_SAFE_FREE(life); CC_SAFE_FREE(atlasIndex); CC_SAFE_FREE(modeA.dirX); CC_SAFE_FREE(modeA.dirY); CC_SAFE_FREE(modeA.radialAccel); CC_SAFE_FREE(modeA.tangentialAccel); CC_SAFE_FREE(modeB.angle); CC_SAFE_FREE(modeB.degreesPerSecond); CC_SAFE_FREE(modeB.deltaRadius); CC_SAFE_FREE(modeB.radius); } Vector ZMLCCParticleSystem::__allInstances; float ZMLCCParticleSystem::__totalParticleCountFactor = 1.0f; ZMLCCParticleSystem::ZMLCCParticleSystem() : _isBlendAdditive(false) , _isAutoRemoveOnFinish(false) , _plistFile("") , _elapsed(0) , _configName("") , _emitCounter(0) , _batchNode(nullptr) , _atlasIndex(0) , _transformSystemDirty(false) , _allocatedParticles(0) , _isActive(true) , _particleCount(0) , _duration(0) , _life(0) , _lifeVar(0) , _angle(0) , _angleVar(0) , _emitterMode(Mode::GRAVITY) , _startSize(0) , _startSizeVar(0) , _endSize(0) , _endSizeVar(0) , _startSpin(0) , _startSpinVar(0) , _endSpin(0) , _endSpinVar(0) , _emissionRate(0) ,_emitFirstFrameEnabled(false) , _totalParticles(0) , _texture(nullptr) , _blendFunc(BlendFunc::ALPHA_PREMULTIPLIED) , _opacityModifyRGB(false) , _yCoordFlipped(1) , _positionType(PositionType::FREE) , _paused(false) , _sourcePositionCompatible(true) // In the furture this member's default value maybe false or be removed. ,_isInitColor(false) ,_cbOnExit(nullptr) { modeA.gravity.setZero(); modeA.speed = 0; modeA.speedVar = 0; modeA.tangentialAccel = 0; modeA.tangentialAccelVar = 0; modeA.radialAccel = 0; modeA.radialAccelVar = 0; modeA.rotationIsDir = false; modeB.startRadius = 0; modeB.startRadiusVar = 0; modeB.endRadius = 0; modeB.endRadiusVar = 0; modeB.rotatePerSecond = 0; modeB.rotatePerSecondVar = 0; } // implementation ZMLCCParticleSystem ZMLCCParticleSystem * ZMLCCParticleSystem::create(const std::string& plistFile) { ZMLCCParticleSystem *ret = new (std::nothrow) ZMLCCParticleSystem(); if (ret && ret->initWithFile(plistFile)) { ret->autorelease(); return ret; } CC_SAFE_DELETE(ret); return ret; } ZMLCCParticleSystem* ZMLCCParticleSystem::createWithTotalParticles(int numberOfParticles) { ZMLCCParticleSystem *ret = new (std::nothrow) ZMLCCParticleSystem(); if (ret && ret->initWithTotalParticles(numberOfParticles)) { ret->autorelease(); return ret; } CC_SAFE_DELETE(ret); return ret; } // static Vector& ZMLCCParticleSystem::getAllZMLCCParticleSystems() { return __allInstances; } void ZMLCCParticleSystem::setTotalParticleCountFactor(float factor) { __totalParticleCountFactor = factor; } bool ZMLCCParticleSystem::init() { return initWithTotalParticles(150); } bool ZMLCCParticleSystem::initWithFile(const std::string& plistFile) { bool ret = false; _plName = plistFile; _plistFile = FileUtils::getInstance()->fullPathForFilename(plistFile); ValueMap dict = FileUtils::getInstance()->getValueMapFromFile(_plistFile); CCASSERT( !dict.empty(), "Particles: file not found"); // FIXME: compute path from a path, should define a function somewhere to do it string listFilePath = plistFile; if (listFilePath.find('/') != string::npos) { listFilePath = listFilePath.substr(0, listFilePath.rfind('/') + 1); ret = this->initWithDictionary(dict, listFilePath); } else { ret = this->initWithDictionary(dict, ""); } return ret; } bool ZMLCCParticleSystem::initWithDictionary(ValueMap& dictionary) { return initWithDictionary(dictionary, ""); } bool ZMLCCParticleSystem::initWithDictionary(ValueMap& dictionary, const std::string& dirname) { bool ret = false; unsigned char *buffer = nullptr; unsigned char *deflated = nullptr; Image *image = nullptr; do { int maxParticles = dictionary["maxParticles"].asInt(); // self, not super if(this->initWithTotalParticles(maxParticles)) { // Emitter name in particle designer 2.0 _configName = dictionary["configName"].asString(); // angle _angle = dictionary["angle"].asFloat(); _angleVar = dictionary["angleVariance"].asFloat(); // duration _duration = dictionary["duration"].asFloat(); // blend function if (!_configName.empty()) { _blendFunc.src = dictionary["blendFuncSource"].asFloat(); } else { _blendFunc.src = dictionary["blendFuncSource"].asInt(); } _blendFunc.dst = dictionary["blendFuncDestination"].asInt(); // color _startColor.r = dictionary["startColorRed"].asFloat(); _startColor.g = dictionary["startColorGreen"].asFloat(); _startColor.b = dictionary["startColorBlue"].asFloat(); _startColor.a = dictionary["startColorAlpha"].asFloat(); _startColorVar.r = dictionary["startColorVarianceRed"].asFloat(); _startColorVar.g = dictionary["startColorVarianceGreen"].asFloat(); _startColorVar.b = dictionary["startColorVarianceBlue"].asFloat(); _startColorVar.a = dictionary["startColorVarianceAlpha"].asFloat(); _endColor.r = dictionary["finishColorRed"].asFloat(); _endColor.g = dictionary["finishColorGreen"].asFloat(); _endColor.b = dictionary["finishColorBlue"].asFloat(); _endColor.a = dictionary["finishColorAlpha"].asFloat(); _endColorVar.r = dictionary["finishColorVarianceRed"].asFloat(); _endColorVar.g = dictionary["finishColorVarianceGreen"].asFloat(); _endColorVar.b = dictionary["finishColorVarianceBlue"].asFloat(); _endColorVar.a = dictionary["finishColorVarianceAlpha"].asFloat(); // particle size _startSize = dictionary["startParticleSize"].asFloat(); _startSizeVar = dictionary["startParticleSizeVariance"].asFloat(); _endSize = dictionary["finishParticleSize"].asFloat(); _endSizeVar = dictionary["finishParticleSizeVariance"].asFloat(); // position float x = dictionary["sourcePositionx"].asFloat(); float y = dictionary["sourcePositiony"].asFloat(); if(!_sourcePositionCompatible) { this->setSourcePosition(Vec2(x, y)); } else { this->setPosition(Vec2(x, y)); } _posVar.x = dictionary["sourcePositionVariancex"].asFloat(); _posVar.y = dictionary["sourcePositionVariancey"].asFloat(); // Spinning _startSpin = dictionary["rotationStart"].asFloat(); _startSpinVar = dictionary["rotationStartVariance"].asFloat(); _endSpin= dictionary["rotationEnd"].asFloat(); _endSpinVar= dictionary["rotationEndVariance"].asFloat(); _emitterMode = (Mode) dictionary["emitterType"].asInt(); // Mode A: Gravity + tangential accel + radial accel if (_emitterMode == Mode::GRAVITY) { // gravity modeA.gravity.x = dictionary["gravityx"].asFloat(); modeA.gravity.y = dictionary["gravityy"].asFloat(); // speed modeA.speed = dictionary["speed"].asFloat(); modeA.speedVar = dictionary["speedVariance"].asFloat(); // radial acceleration modeA.radialAccel = dictionary["radialAcceleration"].asFloat(); modeA.radialAccelVar = dictionary["radialAccelVariance"].asFloat(); // tangential acceleration modeA.tangentialAccel = dictionary["tangentialAcceleration"].asFloat(); modeA.tangentialAccelVar = dictionary["tangentialAccelVariance"].asFloat(); // rotation is dir modeA.rotationIsDir = dictionary["rotationIsDir"].asBool(); } // or Mode B: radius movement else if (_emitterMode == Mode::RADIUS) { if (!_configName.empty()) { modeB.startRadius = dictionary["maxRadius"].asInt(); } else { modeB.startRadius = dictionary["maxRadius"].asFloat(); } modeB.startRadiusVar = dictionary["maxRadiusVariance"].asFloat(); if (!_configName.empty()) { modeB.endRadius = dictionary["minRadius"].asInt(); } else { modeB.endRadius = dictionary["minRadius"].asFloat(); } if (dictionary.find("minRadiusVariance") != dictionary.end()) { modeB.endRadiusVar = dictionary["minRadiusVariance"].asFloat(); } else { modeB.endRadiusVar = 0.0f; } if (!_configName.empty()) { modeB.rotatePerSecond = dictionary["rotatePerSecond"].asInt(); } else { modeB.rotatePerSecond = dictionary["rotatePerSecond"].asFloat(); } modeB.rotatePerSecondVar = dictionary["rotatePerSecondVariance"].asFloat(); } else { CCASSERT( false, "Invalid emitterType in config file"); CC_BREAK_IF(true); } // life span _life = dictionary["particleLifespan"].asFloat(); _lifeVar = dictionary["particleLifespanVariance"].asFloat(); // emission Rate _emissionRate = _totalParticles / _life; //don't get the internal texture if a batchNode is used if (!_batchNode) { // Set a compatible default for the alpha transfer _opacityModifyRGB = false; // texture // Try to get the texture from the cache std::string textureName = dictionary["textureFileName"].asString(); size_t rPos = textureName.rfind('/'); if (rPos != string::npos) { string textureDir = textureName.substr(0, rPos + 1); if (!dirname.empty() && textureDir != dirname) { textureName = textureName.substr(rPos+1); textureName = dirname + textureName; } } else if (!dirname.empty() && !textureName.empty()) { textureName = dirname + textureName; } //modify by djd 粒子支持plist大纹理,优先走大纹理找不到就走小图. Texture2D *tex = nullptr; SpriteFrame *tFrame = nullptr; if (!textureName.empty()) { SpriteFrameCache * frameCache = SpriteFrameCache::getInstance(); tFrame = frameCache->getSpriteFrameByName(textureName.c_str()); // set not pop-up message box when load image failed bool notify = FileUtils::getInstance()->isPopupNotify(); FileUtils::getInstance()->setPopupNotify(false); tex = Director::getInstance()->getTextureCache()->addImage(textureName); // reset the value of UIImage notify FileUtils::getInstance()->setPopupNotify(notify); } if (tFrame){ bool isrotaed = tFrame->isRotated(); Vec2 offset = tFrame->getOffset(); Vec2 originalSize = tFrame->getOriginalSize(); auto pointRect = tFrame->getRect(); setTextureWithRect(tFrame->getTexture(), pointRect,isrotaed,offset,originalSize); }else if (tex) { setTexture(tex); } else if( dictionary.find("textureImageData") != dictionary.end() ) { std::string textureData = dictionary.at("textureImageData").asString(); CCASSERT(!textureData.empty(), "textureData can't be empty!"); auto dataLen = textureData.size(); if (dataLen != 0) { // if it fails, try to get it from the base64-gzipped data int decodeLen = base64Decode((unsigned char*)textureData.c_str(), (unsigned int)dataLen, &buffer); CCASSERT( buffer != nullptr, "CCZMLCCParticleSystem: error decoding textureImageData"); CC_BREAK_IF(!buffer); ssize_t deflatedLen = ZipUtils::inflateMemory(buffer, decodeLen, &deflated); CCASSERT( deflated != nullptr, "CCZMLCCParticleSystem: error ungzipping textureImageData"); CC_BREAK_IF(!deflated); // For android, we should retain it in VolatileTexture::addImage which invoked in Director::getInstance()->getTextureCache()->addUIImage() image = new (std::nothrow) Image(); bool isOK = image->initWithImageData(deflated, deflatedLen); CCASSERT(isOK, "CCZMLCCParticleSystem: error init image with Data"); CC_BREAK_IF(!isOK); setTexture(Director::getInstance()->getTextureCache()->addImage(image, _plistFile + textureName)); image->release(); } } _yCoordFlipped = dictionary.find("yCoordFlipped") == dictionary.end() ? 1 : dictionary.at("yCoordFlipped").asInt(); if( !this->_texture) CCLOGWARN("cocos2d: Warning: ZMLCCParticleSystemQuad system without a texture"); } ret = true; } } while (0); free(buffer); free(deflated); return ret; } bool ZMLCCParticleSystem::initWithTotalParticles(int numberOfParticles) { _totalParticles = numberOfParticles; _particleData.release(); if( !_particleData.init(_totalParticles) ) { CCLOG("Particle system: not enough memory"); this->release(); return false; } _allocatedParticles = numberOfParticles; if (_batchNode) { for (int i = 0; i < _totalParticles; i++) { _particleData.atlasIndex[i] = i; } } // default, active _isActive = true; // default blend function _blendFunc = BlendFunc::ALPHA_PREMULTIPLIED; // default movement type; _positionType = PositionType::FREE; // by default be in mode A: _emitterMode = Mode::GRAVITY; // default: modulate // FIXME:: not used // colorModulate = YES; _isAutoRemoveOnFinish = false; // Optimization: compile updateParticle method //updateParticleSel = @selector(updateQuadWithParticle:newPosition:); //updateParticleImp = (CC_UPDATE_PARTICLE_IMP) [self methodForSelector:updateParticleSel]; //for batchNode _transformSystemDirty = false; return true; } ZMLCCParticleSystem::~ZMLCCParticleSystem() { // Since the scheduler retains the "target (in this case the ZMLCCParticleSystem) // it is not needed to call "unscheduleUpdate" here. In fact, it will be called in "cleanup" //unscheduleUpdate(); _particleData.release(); CC_SAFE_RELEASE(_texture); } void ZMLCCParticleSystem::addParticles(int count) { if (_paused) return; uint32_t RANDSEED = rand(); int start = _particleCount; _particleCount += count; //life for (int i = start; i < _particleCount ; ++i) { float theLife = _life + _lifeVar * RANDOM_M11(&RANDSEED); _particleData.timeToLive[i] = MAX(0, theLife); _particleData.life[i] = _particleData.timeToLive[i]; } //position // if (_positionType == PositionType::FREE) // { // for (int i = start; i < _particleCount; ++i) // { // float x = _sourcePosition.x + _posVar.x * RANDOM_M11(&RANDSEED); // float y = _sourcePosition.y + _posVar.y * RANDOM_M11(&RANDSEED); // Vec2 pos = this->convertToWorldSpace(Vec2(x, y)); // _particleData.posx[i] = pos.x; // _particleData.posy[i] = pos.y; // } // } else { for (int i = start; i < _particleCount; ++i) { _particleData.posx[i] = _sourcePosition.x + _posVar.x * RANDOM_M11(&RANDSEED); } for (int i = start; i < _particleCount; ++i) { _particleData.posy[i] = _sourcePosition.y + _posVar.y * RANDOM_M11(&RANDSEED); } // } //color #define SET_COLOR(c, b, v)\ for (int i = start; i < _particleCount; ++i)\ {\ c[i] = clampf( b + v * RANDOM_M11(&RANDSEED) , 0 , 1 );\ } SET_COLOR(_particleData.colorR, _startColor.r, _startColorVar.r); SET_COLOR(_particleData.colorG, _startColor.g, _startColorVar.g); SET_COLOR(_particleData.colorB, _startColor.b, _startColorVar.b); SET_COLOR(_particleData.colorA, _startColor.a, _startColorVar.a); SET_COLOR(_particleData.deltaColorR, _endColor.r, _endColorVar.r); SET_COLOR(_particleData.deltaColorG, _endColor.g, _endColorVar.g); SET_COLOR(_particleData.deltaColorB, _endColor.b, _endColorVar.b); SET_COLOR(_particleData.deltaColorA, _endColor.a, _endColorVar.a); #define SET_DELTA_COLOR(c, dc)\ for (int i = start; i < _particleCount; ++i)\ {\ dc[i] = (dc[i] - c[i]) / _particleData.timeToLive[i];\ } SET_DELTA_COLOR(_particleData.colorR, _particleData.deltaColorR); SET_DELTA_COLOR(_particleData.colorG, _particleData.deltaColorG); SET_DELTA_COLOR(_particleData.colorB, _particleData.deltaColorB); SET_DELTA_COLOR(_particleData.colorA, _particleData.deltaColorA); //size for (int i = start; i < _particleCount; ++i) { _particleData.size[i] = _startSize + _startSizeVar * RANDOM_M11(&RANDSEED); _particleData.size[i] = MAX(0, _particleData.size[i]); _particleData.startSize[i] = _particleData.size[i]; } if (_endSize != START_SIZE_EQUAL_TO_END_SIZE) { for (int i = start; i < _particleCount; ++i) { float endSize = _endSize + _endSizeVar * RANDOM_M11(&RANDSEED); endSize = MAX(0, endSize); _particleData.deltaSize[i] = (endSize - _particleData.size[i]) / _particleData.timeToLive[i]; _particleData.deltaSizeAllLife[i] = endSize - _particleData.size[i]; } } else { for (int i = start; i < _particleCount; ++i) { _particleData.deltaSize[i] = 0.0f; } } // rotation for (int i = start; i < _particleCount; ++i) { _particleData.rotation[i] = _startSpin + _startSpinVar * RANDOM_M11(&RANDSEED); } for (int i = start; i < _particleCount; ++i) { float endA = _endSpin + _endSpinVar * RANDOM_M11(&RANDSEED); _particleData.deltaRotation[i] = (endA - _particleData.rotation[i]) / _particleData.timeToLive[i]; } // position Vec2 pos; if (_positionType == PositionType::FREE) { pos = this->convertToWorldSpace(Vec2::ZERO); } else if (_positionType == PositionType::RELATIVE) { pos = _position; } for (int i = start; i < _particleCount; ++i) { _particleData.startPosX[i] = pos.x; } for (int i = start; i < _particleCount; ++i) { _particleData.startPosY[i] = pos.y; } // Mode Gravity: A if (_emitterMode == Mode::GRAVITY) { // radial accel for (int i = start; i < _particleCount; ++i) { _particleData.modeA.radialAccel[i] = modeA.radialAccel + modeA.radialAccelVar * RANDOM_M11(&RANDSEED); } // tangential accel for (int i = start; i < _particleCount; ++i) { _particleData.modeA.tangentialAccel[i] = modeA.tangentialAccel + modeA.tangentialAccelVar * RANDOM_M11(&RANDSEED); } // rotation is dir if( modeA.rotationIsDir ) { for (int i = start; i < _particleCount; ++i) { float a = CC_DEGREES_TO_RADIANS( _angle + _angleVar * RANDOM_M11(&RANDSEED) ); Vec2 v(cosf( a ), sinf( a )); float s = modeA.speed + modeA.speedVar * RANDOM_M11(&RANDSEED); Vec2 dir = v * s; _particleData.modeA.dirX[i] = dir.x;//v * s ; _particleData.modeA.dirY[i] = dir.y; _particleData.rotation[i] = -CC_RADIANS_TO_DEGREES(dir.getAngle()); } } else { for (int i = start; i < _particleCount; ++i) { float a = CC_DEGREES_TO_RADIANS( _angle + _angleVar * RANDOM_M11(&RANDSEED) ); Vec2 v(cosf( a ), sinf( a )); float s = modeA.speed + modeA.speedVar * RANDOM_M11(&RANDSEED); Vec2 dir = v * s; _particleData.modeA.dirX[i] = dir.x;//v * s ; _particleData.modeA.dirY[i] = dir.y; } } } // Mode Radius: B else { //Need to check by Jacky // Set the default diameter of the particle from the source position for (int i = start; i < _particleCount; ++i) { _particleData.modeB.radius[i] = modeB.startRadius + modeB.startRadiusVar * RANDOM_M11(&RANDSEED); } for (int i = start; i < _particleCount; ++i) { _particleData.modeB.angle[i] = CC_DEGREES_TO_RADIANS( _angle + _angleVar * RANDOM_M11(&RANDSEED)); } for (int i = start; i < _particleCount; ++i) { _particleData.modeB.degreesPerSecond[i] = CC_DEGREES_TO_RADIANS(modeB.rotatePerSecond + modeB.rotatePerSecondVar * RANDOM_M11(&RANDSEED)); } if(modeB.endRadius == START_RADIUS_EQUAL_TO_END_RADIUS) { for (int i = start; i < _particleCount; ++i) { _particleData.modeB.deltaRadius[i] = 0.0f; } } else { for (int i = start; i < _particleCount; ++i) { float endRadius = modeB.endRadius + modeB.endRadiusVar * RANDOM_M11(&RANDSEED); _particleData.modeB.deltaRadius[i] = (endRadius - _particleData.modeB.radius[i]) / _particleData.timeToLive[i]; } } } } void ZMLCCParticleSystem::onEnter() { #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnEnter)) return; } #endif Node::onEnter(); // update after action in run! this->scheduleUpdateWithPriority(1); __allInstances.pushBack(this); } void ZMLCCParticleSystem::onExit() { #if CC_ENABLE_SCRIPT_BINDING if (_scriptType == kScriptTypeJavascript) { if (ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnExit)) return; } #endif if (_cbOnExit != nullptr && _plName.size() > 0) { _cbOnExit(_plName, this); } this->unscheduleUpdate(); Node::onExit(); auto iter = std::find(std::begin(__allInstances), std::end(__allInstances), this); if (iter != std::end(__allInstances)) { __allInstances.erase(iter); } } void ZMLCCParticleSystem::stopSystem() { _isActive = false; _elapsed = _duration; _emitCounter = 0; } void ZMLCCParticleSystem::setVisible(bool visible) { // if (CocosConfig::getParticleVisibleReset()) { if (visible != _visible) { if (visible) this->resetSystem(); else this->stopSystem(); } // } Node::setVisible(visible); } void ZMLCCParticleSystem::setVisibleOnly(bool visible){ Node::setVisible(visible); } //add by djd void ZMLCCParticleSystem::updateDisplayedOpacity(GLubyte opacity){ Node::updateDisplayedOpacity(opacity); if (!CocosConfig::getParticleOpacity()) { return; } if (!_isInitColor) { _initStartColor = getStartColor(); _initStartColorVar = getStartColorVar(); _initEndColor = getEndColor(); _initEndColorVar = getEndColorVar(); _initBlendFunc = _blendFunc; _isInitColor = true; } if (opacity < 100) { _blendFunc = BlendFunc::ADDITIVE; }else{ _blendFunc = _initBlendFunc; } setStartColor(Color4F(_initStartColor.r* opacity/255, _initStartColor.g* opacity/255, _initStartColor.b* opacity/255, _initStartColor.a )); setStartColorVar(Color4F(_initStartColorVar.r* opacity/255, _initStartColorVar.g* opacity/255, _initStartColorVar.b* opacity/255, _initStartColorVar.a)); setEndColor(Color4F(_initEndColor.r* opacity/255, _initEndColor.g* opacity/255, _initEndColor.b* opacity/255, _initEndColor.a)); setEndColorVar(Color4F(_initEndColorVar.r* opacity/255, _initEndColorVar.g* opacity/255, _initEndColorVar.b* opacity/255, _initEndColorVar.a)); } void ZMLCCParticleSystem::resetSystem() { _isActive = true; _elapsed = 0; for (int i = 0; i < _particleCount; ++i) { _particleData.timeToLive[i] = 0.0f; } } bool ZMLCCParticleSystem::isFull() { return (_particleCount == _totalParticles); } // ZMLCCParticleSystem - MainLoop void ZMLCCParticleSystem::update(float dt) { CC_PROFILER_START_CATEGORY(kProfilerCategoryParticles , "CCZMLCCParticleSystem - update"); if(CocosConfig::isParticleUpdateOptimize() == false || _visible == true){ if (_isActive && _emissionRate) { float rate = 1.0f / _emissionRate; int totalParticles = static_cast(_totalParticles * __totalParticleCountFactor); //issue #1201, prevent bursts of particles, due to too high emitCounter if (_particleCount < totalParticles) { _emitCounter += dt; if (_emitCounter < 0.f) _emitCounter = 0.f; } int emitCount = MIN(totalParticles - _particleCount, _emitCounter / rate); addParticles(emitCount); _emitCounter -= rate * emitCount; _elapsed += dt; if (_elapsed < 0.f) _elapsed = 0.f; if (_duration != DURATION_INFINITY && _duration < _elapsed) { this->stopSystem(); } } { for (int i = 0; i < _particleCount; ++i) { _particleData.timeToLive[i] -= dt; } for (int i = 0; i < _particleCount; ++i) { if (_particleData.timeToLive[i] <= 0.0f) { int j = _particleCount - 1; while (j > 0 && _particleData.timeToLive[j] <= 0) { _particleCount--; j--; } _particleData.copyParticle(i, _particleCount - 1); if (_batchNode) { //disable the switched particle int currentIndex = _particleData.atlasIndex[i]; _batchNode->disableParticle(_atlasIndex + currentIndex); //switch indexes _particleData.atlasIndex[_particleCount - 1] = currentIndex; } --_particleCount; if( _particleCount == 0 && _isAutoRemoveOnFinish ) { this->unscheduleUpdate(); _parent->removeChild(this, true); return; } } } if (_emitterMode == Mode::GRAVITY) { for (int i = 0 ; i < _particleCount; ++i) { zml_particle_point tmp, radial = {0.0f, 0.0f}, tangential; // radial acceleration if (_particleData.posx[i] || _particleData.posy[i]) { normalize_point(_particleData.posx[i], _particleData.posy[i], &radial); } tangential = radial; radial.x *= _particleData.modeA.radialAccel[i]; radial.y *= _particleData.modeA.radialAccel[i]; // tangential acceleration std::swap(tangential.x, tangential.y); tangential.x *= - _particleData.modeA.tangentialAccel[i]; tangential.y *= _particleData.modeA.tangentialAccel[i]; // (gravity + radial + tangential) * dt tmp.x = radial.x + tangential.x + modeA.gravity.x; tmp.y = radial.y + tangential.y + modeA.gravity.y; tmp.x *= dt; tmp.y *= dt; _particleData.modeA.dirX[i] += tmp.x; _particleData.modeA.dirY[i] += tmp.y; // this is cocos2d-x v3.0 // if (_configName.length()>0 && _yCoordFlipped != -1) // this is cocos2d-x v3.0 tmp.x = _particleData.modeA.dirX[i] * dt * _yCoordFlipped; tmp.y = _particleData.modeA.dirY[i] * dt * _yCoordFlipped; _particleData.posx[i] += tmp.x; _particleData.posy[i] += tmp.y; } } else { //Why use so many for-loop separately instead of putting them together? //When the processor needs to read from or write to a location in memory, //it first checks whether a copy of that data is in the cache. //And every property's memory of the particle system is continuous, //for the purpose of improving cache hit rate, we should process only one property in one for-loop AFAP. //It was proved to be effective especially for low-end machine. for (int i = 0; i < _particleCount; ++i) { _particleData.modeB.angle[i] += _particleData.modeB.degreesPerSecond[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.modeB.radius[i] += _particleData.modeB.deltaRadius[i] * dt; } for (int i = 0; i < _particleCount; ++i) { _particleData.posx[i] = - cosf(_particleData.modeB.angle[i]) * _particleData.modeB.radius[i]; } for (int i = 0; i < _particleCount; ++i) { _particleData.posy[i] = - sinf(_particleData.modeB.angle[i]) * _particleData.modeB.radius[i] * _yCoordFlipped; } } //color r,g,b,a for (int i = 0 ; i < _particleCount; ++i) { _particleData.colorR[i] += _particleData.deltaColorR[i] * dt; } for (int i = 0 ; i < _particleCount; ++i) { _particleData.colorG[i] += _particleData.deltaColorG[i] * dt; } for (int i = 0 ; i < _particleCount; ++i) { _particleData.colorB[i] += _particleData.deltaColorB[i] * dt; } for (int i = 0 ; i < _particleCount; ++i) { _particleData.colorA[i] += _particleData.deltaColorA[i] * dt; } //size for (int i = 0 ; i < _particleCount; ++i) { _particleData.size[i] += (_particleData.deltaSize[i] * dt); _particleData.size[i] = MAX(0, _particleData.size[i]); } //angle for (int i = 0 ; i < _particleCount; ++i) { _particleData.rotation[i] += _particleData.deltaRotation[i] * dt; } updateParticleQuads(); _transformSystemDirty = false; } } // only update gl buffer when visible if (_visible && ! _batchNode) { postStep(); } CC_PROFILER_STOP_CATEGORY(kProfilerCategoryParticles , "CCZMLCCParticleSystem - update"); } void ZMLCCParticleSystem::updateWithNoTime(void) { this->update(0.0f); } void ZMLCCParticleSystem::updateParticleQuads() { //should be overridden } void ZMLCCParticleSystem::postStep() { // should be overridden } // ZMLCCParticleSystem - Texture protocol void ZMLCCParticleSystem::setTexture(Texture2D* var) { if (_texture != var) { CC_SAFE_RETAIN(var); CC_SAFE_RELEASE(_texture); _texture = var; updateBlendFunc(); } } void ZMLCCParticleSystem::setTextureWithRect(Texture2D *texture, const Rect& rect, bool isrotated, Vec2& offset, Vec2 &originalSize){ setTexture(texture); } void ZMLCCParticleSystem::updateBlendFunc() { CCASSERT(! _batchNode, "Can't change blending functions when the particle is being batched"); if(_texture) { bool premultiplied = _texture->hasPremultipliedAlpha(); _opacityModifyRGB = false; if( _texture && ( _blendFunc.src == CC_BLEND_SRC && _blendFunc.dst == CC_BLEND_DST ) ) { if( premultiplied ) { _opacityModifyRGB = true; } else { _blendFunc = BlendFunc::ALPHA_NON_PREMULTIPLIED; } } } } Texture2D * ZMLCCParticleSystem::getTexture() const { return _texture; } // ZMLCCParticleSystem - Additive Blending void ZMLCCParticleSystem::setBlendAdditive(bool additive) { if( additive ) { _blendFunc = BlendFunc::ADDITIVE; } else { if( _texture && ! _texture->hasPremultipliedAlpha() ) _blendFunc = BlendFunc::ALPHA_NON_PREMULTIPLIED; else _blendFunc = BlendFunc::ALPHA_PREMULTIPLIED; } } bool ZMLCCParticleSystem::isBlendAdditive() const { return( _blendFunc.src == GL_SRC_ALPHA && _blendFunc.dst == GL_ONE); } // ZMLCCParticleSystem - Properties of Gravity Mode void ZMLCCParticleSystem::setTangentialAccel(float t) { CCASSERT( _emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.tangentialAccel = t; } float ZMLCCParticleSystem::getTangentialAccel() const { CCASSERT( _emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.tangentialAccel; } void ZMLCCParticleSystem::setTangentialAccelVar(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.tangentialAccelVar = t; } float ZMLCCParticleSystem::getTangentialAccelVar() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.tangentialAccelVar; } void ZMLCCParticleSystem::setRadialAccel(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.radialAccel = t; } float ZMLCCParticleSystem::getRadialAccel() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.radialAccel; } void ZMLCCParticleSystem::setRadialAccelVar(float t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.radialAccelVar = t; } float ZMLCCParticleSystem::getRadialAccelVar() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.radialAccelVar; } void ZMLCCParticleSystem::setRotationIsDir(bool t) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.rotationIsDir = t; } bool ZMLCCParticleSystem::getRotationIsDir() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.rotationIsDir; } void ZMLCCParticleSystem::setGravity(const Vec2& g) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.gravity = g; } const Vec2& ZMLCCParticleSystem::getGravity() { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.gravity; } void ZMLCCParticleSystem::setSpeed(float speed) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.speed = speed; } float ZMLCCParticleSystem::getSpeed() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.speed; } void ZMLCCParticleSystem::setSpeedVar(float speedVar) { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); modeA.speedVar = speedVar; } float ZMLCCParticleSystem::getSpeedVar() const { CCASSERT(_emitterMode == Mode::GRAVITY, "Particle Mode should be Gravity"); return modeA.speedVar; } // ZMLCCParticleSystem - Properties of Radius Mode void ZMLCCParticleSystem::setStartRadius(float startRadius) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.startRadius = startRadius; } float ZMLCCParticleSystem::getStartRadius() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.startRadius; } void ZMLCCParticleSystem::setStartRadiusVar(float startRadiusVar) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.startRadiusVar = startRadiusVar; } float ZMLCCParticleSystem::getStartRadiusVar() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.startRadiusVar; } void ZMLCCParticleSystem::setEndRadius(float endRadius) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.endRadius = endRadius; } float ZMLCCParticleSystem::getEndRadius() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.endRadius; } void ZMLCCParticleSystem::setEndRadiusVar(float endRadiusVar) { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.endRadiusVar = endRadiusVar; } float ZMLCCParticleSystem::getEndRadiusVar() const { CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.endRadiusVar; } void ZMLCCParticleSystem::setRotatePerSecond(float degrees) { // CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.rotatePerSecond = degrees; } float ZMLCCParticleSystem::getRotatePerSecond() const { // CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.rotatePerSecond; } void ZMLCCParticleSystem::setRotatePerSecondVar(float degrees) { // CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); modeB.rotatePerSecondVar = degrees; } float ZMLCCParticleSystem::getRotatePerSecondVar() const { // CCASSERT(_emitterMode == Mode::RADIUS, "Particle Mode should be Radius"); return modeB.rotatePerSecondVar; } void ZMLCCParticleSystem::setEmitFirstFrameEnabled(bool emitFirstFrameEnabled){ if(emitFirstFrameEnabled){ _emitCounter = _emissionRate; } _emitFirstFrameEnabled = emitFirstFrameEnabled; } bool ZMLCCParticleSystem::isActive() const { return _isActive; } int ZMLCCParticleSystem::getTotalParticles() const { return _totalParticles; } void ZMLCCParticleSystem::setTotalParticles(int var) { CCASSERT( var <= _allocatedParticles, "Particle: resizing particle array only supported for quads"); _totalParticles = var; } const BlendFunc& ZMLCCParticleSystem::getBlendFunc() const { return _blendFunc; } void ZMLCCParticleSystem::setBlendFunc(const BlendFunc &blendFunc) { if( _blendFunc.src != blendFunc.src || _blendFunc.dst != blendFunc.dst ) { _blendFunc = blendFunc; this->updateBlendFunc(); } } bool ZMLCCParticleSystem::isAutoRemoveOnFinish() const { return _isAutoRemoveOnFinish; } void ZMLCCParticleSystem::setAutoRemoveOnFinish(bool var) { _isAutoRemoveOnFinish = var; } // ZMLCCParticleSystem - methods for batchNode rendering ParticleBatchNode* ZMLCCParticleSystem::getBatchNode(void) const { return _batchNode; } void ZMLCCParticleSystem::setBatchNode(ParticleBatchNode* batchNode) { if( _batchNode != batchNode ) { _batchNode = batchNode; // weak reference if( batchNode ) { //each particle needs a unique index for (int i = 0; i < _totalParticles; i++) { _particleData.atlasIndex[i] = i; } } } } //don't use a transform matrix, this is faster void ZMLCCParticleSystem::setScale(float s) { _transformSystemDirty = true; Node::setScale(s); } void ZMLCCParticleSystem::setRotation(float newRotation) { _transformSystemDirty = true; Node::setRotation(newRotation); } void ZMLCCParticleSystem::setScaleX(float newScaleX) { _transformSystemDirty = true; Node::setScaleX(newScaleX); } void ZMLCCParticleSystem::setScaleY(float newScaleY) { _transformSystemDirty = true; Node::setScaleY(newScaleY); } void ZMLCCParticleSystem::start() { resetSystem(); } void ZMLCCParticleSystem::stop() { stopSystem(); } bool ZMLCCParticleSystem::isPaused() const { return _paused; } void ZMLCCParticleSystem::pauseEmissions() { _paused = true; } void ZMLCCParticleSystem::resumeEmissions() { _paused = false; } void ZMLCCParticleSystem::setCbOnExit(std::function cb) { _cbOnExit = cb; } NS_CC_END